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Although two compounds of divalent silicon, the tetracoordinate 
Si[CH(PMe2):]' and the ir-complex decamethylsilicocene,2 have 
been described, dicoordinate silicon compounds3 have only been 
intercepted in trapping experiments4 or studied in matrices at 
low temperatures.5-6 We now report on the synthesis, isolation, 
and structure of 2, a stable dicoordinate silicon compound. 

Compound 2 is obtained as the only reaction product (1H NMR) 
by reducing V with potassium in boiling THF (Scheme I).8,9 It 
is a colorless, crystalline solid with remarkable thermal stability. 
2 can be distilled at 85 0 C (0.1 Torr) without decomposition. 
Solutions of 2 (toluene, sealed NMR tubes) were found to be 
unchanged after 4 months of heating to ISO 0 C. In the context 
of these findings, it is remarkable that the diamidosilylene 
Me2Si(1BuN)2Si: reported by Veith5" is stable only below 77 K. 

Positive identification of 2 was accomplished by gas-phase 
electron diffraction.10 The structure, shown in Figure 1, is in 
good agreement with the results of quantum chemical calculations 
(Table 1). X-ray crystallography confirmed that 2 is also 
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Figure 1. Molecular model (PLUTON") of 2. Hydrogen atoms have 
been omitted for clarity. 
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Table 1. Experimental (1, 2) and Calculated (3) Bond Lengths 
[pm] and Angles [deg] of Diamidosilylenes (2, 3) and Silanes (1) 

V 2* 3* 

Si-N 169.5(3), 1.700(3) 175.3(5) 174.25 
N-Cl 141.6(5), 141.4(4) 140.0(9) 138.99 
Cl-Cl ' 132.2(4) 134.7(21) 133.25 
N-Si-N 95.4(1) 90.5(10) 86.04 
N-Cl-Cl ' 115.3(3), 114.4(3) 114.1(5) 112.20 

" Single crystal X-ray diffraction data. * Gas-Phase electron diffraction 
data.c Quantum chemical data. 

monomeric in the solid state, but precise structural data could 
not be obtained due to twinning problems.11 

Compound 2 is quite unreactive compared with transient 
silylenes. Triethylsilane, a known silylene scavenger,12 did not 
react with 2 even after prolonged heating to 110 ° C. No reaction 
was observed with pyridine, trimethylphosphine, triethylamine, 
or THF, all of which are known to form Lewis acid-base complexes 
with silylenes.13 Compound 2 does react with air and with metal 
carbonyls. For example, reaction of 2 with Ni(CO)4 in THF 
gives the base free bis-silylene complex (LSi:)2Ni(CO)2 (LSi: = 
2).14 

(10) (a) Electron diffraction data of 2 were recorded on a Balzers Edigraph 
KDG 21* with a nozzle temperature of about 75 "C and nozzle-to-plate 
distances of about 50 and 25 cm. Optical densities were recorded on the 
Snoopy densitometer and processed by standard procedures.101 Atomic 
scattering factors were taken from ref 1Od. Backgrounds were drawn at least-
squares adjusted polynomials to the difference between the total observed 
intensity and the molecular intensity calculated for the best model. The final 
modified molecular intensity curves extended from s - 20.00 to 152.50 with 
increment Ss = 1.25 nnr1 (50 cm, five plates) and from s = 60.00 to 30.00 
with increment fa = 2.50 nrrr1 (25 cm, three plates). Least-squares refinements 
were based on a five-membered C2N2Si ring (C, symmetry) with an envelope 
conformation, the symmetry plane containing the Si atom and bisecting the 
C-C double bond. The flap angle was defined as the angle between the SiN2 
and the NC2 planes. Methyl groups and the tertiary butyl groups were assumed 
to have local C30 symmetries. Methyl groups were fixed in staggered 
conformations, and only a mean C-H bond distance was refined. The molecular 
structure was refined by least-squares calculations on the intensity data under 
the constraints of a geometrical consistent r, structure. Best modeling of 
observed intensities was obtained with a nearly planar five-membered ring, 
flap angle = 5(12)°, and nearly planar nitrogen atoms, (b) Bastiansen, O.; 
Graber, R.; Wegman, L. Balzers High Vacuum Report 1969, 25, 1. (c) 
Andersen, B.; Seip, H. M.; Strand, T. G.; Stelevik, R. Chem. Phys. Letters 
1969, 3,617. (d) Schafter, L.; Yates, A. C; Bonham, R. A. J. Chem. Phys. 
1971, 55, 3055. 
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clearly nonbonding. R{F) = 16.5%, R,(F) = 24.77%. 
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The unusual stability of 2 as compared to the diamidosilylene 
described by Veith et al.5a may result in part from aromatic 
stabilization (Scheme 2). It is instructive to compare the 
structural data for 2 and 1 (Table 1). 

The difference between the bond lengths Cl-Cl ' (a formal 
double bond) and N-Cl (a formal single bond) decreases from 
1 to 2, consistent with an increase in derealization. The 
interpretation of Si-N bond lengths is less straightforward. Bonds 
to divalent group 14 elements are typically 8-10 pm longer than 
corresponding bond lengths of tetravalent elements.15 The 
elongation of the Si-N bond in 2 (5.6 pm as compared to 1) is 
significantly less than expected on these grounds and in agreement 
with a partial Si-N double bond. Further evidence for N-Si 
7r-bonding in 2 is the strong deshielding of the nitrogen atoms 
(15N NMR-170.3 ppm in 2 vs -282.9 ppm in 1).» The deshielding 
of the ring protons in 2 (1H NMR 5.73 ppm for 1 and 6.75 ppm 
for 2) is consistent with aromatic delocalization in the silylene. 

To quantify our assumption, the relative stabilities of the two 
sily lenes 3 (six w-electrons) and 5 (four r-electrons) were evaluated 
by quantum chemical methods.16 Their insertion into dihydrogen 
was chosen as a set of isodesmic reactions (Scheme 3). 

Comparison of the reaction energies AEi and A£2 shows 3 to 
be stabilized relative to 5 by 13.92 kcal-moH. This surprisingly 
large energy difference may be taken as an upper limit for a 
possible aromatic stabilization of 3 vs the C-C-saturated derivative 
5. 

A detailed comparison of 2 with its carbene17 and germylene18 

derivatives is under way. To study the influence of the C-C 
double bond on the stability of 2, the synthesis of the corresponding 
C-C-saturated derivative would be highly desirable, and we have 
begun to work on this task. 
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